
Writing an Indicator Cookbook

Thomas Weigert, weigert@mst.edu
Extensively revised by Robert A. Schmied, ras@acm.org

Last author update: May 2008
This revision: Author : ras Revision : 1.6.1.19Date : 2012/02/2623 : 26 : 49

Abstract

The process to write (code) GeniusTrader Indicators is described along
with an explanation of the GT::Indicator::BOL and other examples.
Analyses that must be performed in order to produce a correct indi-
cator are discussed.

1 Introduction

This note attempts to summarize lessons learned writing GT indicators,
in the hope that this will be useful to other GT developers.1 The Bollinger
Band indicator is used as a starting point and its implementation is ex-
plained in detail. Subsequent sections illustrate more advanced aspects
of writing GT Indicators. Lastly, programmatic indicator testing strategies
are discussed.

1 The general techniques discussed here apply equally to the writing of signals, albeit
the name of some of the key functions changes. For example, the main function to be
written for a signal is detect(), which takes the place of calculate().

1

Text like the following is used to denote indicator code
1 package GT::Indicators::BOL;
2

3 # Copyright 2000-2002 Raphaël Hertzog, Fabien Fulhaber
4 # This file is distributed under the terms of the General Public License
5 # version 2 or (at your option) any later version.
6

7 # Standards-Version: 1.0
8

9 use strict;

Text like the following is used to denote pod code
=pod

this is perl pod or plain old documentation
try $ perldoc perlpod for all the dirty details

=cut

Text like the following is used to denote suggested indicator testing code
#!/usr/bin/perl
#
indicator testing code
#

With respect to terminology, a GT Indicator defines a time series. In
general, a time series is a sequence of data values, ordered linearly by
time. The prices of a market (i.e. a specific marketable security, such
as IBM or AAPL) is also a time series (and also an indicator; consider
{I:Prices CLOSE}). A GT Indicator is constructed by some or all of the
following:

• one or more time series.
• an application of a transformation to a time series.
• the sequential application of a computation on the individual values

of one or more time series.

2 Header

The top few lines of an indicator module file sets up the module as an
indicator and loads the minimally required GT dependencies.

2

2.1 Package definition and object initialization

Line 1 defines the formal perl name of this module. Lines 3, 4 and 6 use
clauses are standard for all indicator modules.

1 package GT::Indicators::BOL;
2

3 use strict;
4 use vars qw(@ISA @NAMES @DEFAULT_ARGS);
5

6 use GT::Indicators;

2.2 Including dependent packages

The next few lines load the packages this indicator depends on. For exam-
ple, Bollinger Bands are moving averages that envelope a securities price.
It consists of three series: A simple moving average of the securities price,
and two series n-standard deviations above and below the price mov-
ing average. Thus, in this particular case, we need to include these three
perl modules: GT::Indicator::SMA, GT::Indicator::StandardDeviation, and
GT::Prices.

7 use GT::Indicators::SMA;
8 use GT::Indicators::StandardDeviation;
9 use GT::Prices;

For the most part all indicators will require line 9, because indicators al-
most always manipulate price data directly.

2.3 Input parameters

The @ISA assignment specifically defines this package to be an instance
of an indicator object. The default arguments statement (@DEFAULT_ARGS)
defines the default values for the input parameters of the indicator. These
are either constant values or they name another indicator (data series)
that supplies the current value of the its’ data for this indicator.

10

11 @ISA = qw(GT::Indicators);
12 @DEFAULT_ARGS = (20, 2, "{I:Prices CLOSE}");

3

In this example, the first two parameters are by default given the con-
stant values 20 and 2, respectively. The third parameter is the result of
evaluating the indicator {I:Prices CLOSE} at the current period, yield-
ing the current close of the prices array.

An indicators’ input arguments are accessed via the methods defined
in module GT::ArgsTree.

$self->{args}->get_arg_constant($n)
$self->{args}->get_arg_names($n)
$self->{args}->get_arg_values($calc, $i, $n)

where $n is the argument number (starting at 1), $calc is a calculator ob-
ject, and $i is the current period.

The first form requires that the argument is a constant, which can be
tested by

$self->{args}->is_constant($n)

Refer to module GT::ArgsTree documentation for more detail on the meth-
ods dealing with calculation objects (e.g. indicators, signals and systems).

The second form will obtain names of the corresponding argument
(for constant arguments, the name is the same as its value).2 The final
form obtains both constant and non-constant values for a given period
(of course, constants are the same for all periods).

Most indicators as currently defined perform no type checking on their
parameters, resulting in fatal errors when parameters of the wrong type
are passed. Care must be taken to pass constant parameters when such
are expected, and time series as parameters, where those are required.3

2 Several indicators use get_arg_names() in a context where the argument is not guar-
anteed to be constant, and thus will fail when a non-constant parameter is given (e.g. the
name of a series).

3 Proper run time checking of parameter types is advisable when writing a new indica-
tor.

4

3 Output values

Indicators produce one or more output values (e.g. data series). In other
words, for each period, an indicator will output one or more values. Out-
put values are defined in the names clause:

13 @NAMES = ("BOL[#1,#3]","BOLSup[#1,#2,#3]","BOLInf[#1,#2,#3]");

In this instance, we define three output series for Bollinger Bands: the
moving average, and the upper and lower bands. These values can be re-
ferred to by the names given in the above clause, where the arguments
(hashed numbers in brackets) are replaced by the corresponding input
parameters of the indicator. The symbol #n is replaced by the correspond-
ing input parameter of the indicator.

The default name of an indicator (a data series) is the name of the
first output series from the @NAMES clause, so in this example the name
is I:BOL[#1,#3]. Note that the first and third arguments are included in
the indicator name so when the arguments are substituted, this indica-
tors’ name becomes: BOL[12 {I:Prices CLOSE}]4. As a consequence of
this naming scheme {I:BOL 12 2} and {I:BOL 12 10} cannot be distin-
guished when they are both used at the same time. Therefore care should
be taken to select the the output series name wisely so that there are no
conflicts between indicators. In the code the name of an output series can
be either used literally as a string (e.g. "I:BOL[12 {I:Prices CLOSE}]"),
or it can be obtained by the get_name() method (module GT::Registry)

$self->get_name
$self->get_name($n)

where $n refers to the position of the output series (e.g. an @NAMES ele-
ment) (starting at 0).

The values of the output series are set and read via a calculator object
$calc, where $name is the name of the output series and $i is the period:

$calc->indicators->get($name, $i)
$calc->indicators->set($name, $i, $value)

See modules GT::Calculator and GT::CacheValues for details on calcu-
lator objects and methods that apply to them.

4 Actually the GT::ArgsTree hash for the I::BOL entry key ‘full_name’ will not include
the indicator name (e.g. BOL) nor the square brackets, just the string ‘12 {I:Prices CLOSE}’.

5

4 Initialization Method

If an indicator requires intermediate series to compute its value or re-
quires data from past periods, these are set up in the initialize()method.
This method is passed an indicator object as the single parameter:

14

15 sub initialize {
16 my ($self) = @_;

4.1 Intermediate series

Many indicators depend in their computation on other series. For exam-
ple, Bollinger bands need the simple moving average of the price of the
security for each period, as well as the standard deviation of the price
of the security for each period. Both of these intermediate values form
a series. Each intermediate series must be created in the initialize()
method and be assigned to an attribute of the indicator. A series is created
by calling the new method on its class and passing the appropriate argu-
ments, or by evaluating the textual representation of the indicator defin-
ing the series. These intermediate series may rely on output values or on
temporary data, see Section 7.2. For Bollinger Band we define the I:SMA
(lines 18 .. 20) and I:StandardDeviation (lines 21..24) as intermediate se-
ries, passing both the first (period) and third (data array the indicator is
applied to, typically I:Prices CLOSE) arguments.

17

18 $self->{’sma’} =
19 GT::Indicators::SMA->new([$self->{’args’}->get_arg_names(1),
20 $self->{’args’}->get_arg_names(3)]);
21 $self->{’sd’} =
22 GT::Indicators::StandardDeviation->new(
23 [$self->{’args’}->get_arg_names(1),
24 $self->{’args’}->get_arg_names(3)]);

If the indicator is not given any parameters upon creation, the default val-
ues are used.

Note that when such an intermediate series uses other series as its ar-
guments, these cannot be defined by their constructor functions but must
be given in their textual representation. For example, the following dou-
bly smoothes the SMA defined above:

6

$self->{’sma’} = GT::Indicators::SMA->new(
[$self->{’args’}->get_arg_names(1),

’{I:SMA ’ . $self->{’args’}->get_arg_names(1)
. ’ ’ . $self->{’args’}->get_arg_names(3) . ’}’

]);

by creating an additional I:SMA data series in ‘textual context’ (observe
the concatentation operators in the 2nd and 3rd lines of the example)

1. the indicator name ({I:SMA) a literal string
2. the time period name (a string) ($self->{’args’}->get_arg_names(1))
3. a single whitespace ()
4. the data series name (a string) ($self->{’args’}->get_arg_names(3))
5. the indicator string closing curly bracket (})

yielding {I:SMA 12 {I:Prices CLOSE}}. This data series is then used as
input for the $self->{’sma’} intermediate series.

An intermediate series can also conveniently be constructed using the
GT::Eval::create_standard_object() method:

$self->{’sma2’} = GT::Eval::create_standard_object(
"I:SMA", "12 {I:Prices CLOSE}");

Note that the arguments in this example are constant strings, and there-
fore cannot be modified by user arguments.

4.2 Intermediate data series computation

During the computation of an indicator, intermediate series’ are either
computed via the dependency mechanism (see Section 4.3) or by explic-
itly computing the series via:

$self->{’sma’}->calculate($calc, $i)
$self->{’sma’}->calculate_interval($calc, $i, $j)

where $calc is a calculator object, and $i and $j are time period index
values. Note these method-invocation statements are not in the I:BOL ex-
ample, but similar ones can be found in other GT indicator modules. Also
note that the reference $self->{’sma’} shown here is just an example, it
can be any intermediate series object defined by the indicator.

The values of these series is obtained via the standard get method from
package GT::CacheValues (automatically imported via GT::Indicator via
GT::Calculator). For example, the i-th value of the SMA is obtained via:

7

my $sma_value = $calc->indicators->get($self->{’sma’}->get_name, $i);

and when $self->{’sma’}->get_name is a object reference, as in the I:BOL
example, the get method can appear as

my $sma_value = $calc->indicators->get($sma_name, $i);

as will be seen in Section 5.2.

4.3 Dependencies

Many indicators depend on past data to calculate their current value, ei-
ther on past price information, or on the previous values of the indicator
or on the previous value of intermediate series. A key feature of GT is that
the computation of those past values can be largely driven automatically
through a dependency mechanism. We can declare the current value of
an indicator to be dependent on the previous values of its parameters, or
of other series, or of the price information it is operating on. Such de-
pendencies are declared for p periods of data; when updating dependen-
cies those p values will be ensured to be available. To satisfy dependen-
cies may in turn require additional data, the computing the dependencies
may in turn depend on other values. The dependency mechanism prop-
agates automatically until all dependencies are satisfied or it determines
a dependency cannot be satisfied.

Determining the correct dependencies is important to be able to com-
pute the indicator both correctly and efficiently. If too little data is avail-
able, an indicator may not be able to be computed, at best, or may give
incorrect results, at worst. If too much data is required, less history of an
indicator can be computed.

When the dependencies are known at the time the indicator is cre-
ated (static dependency), the dependencies are defined in initialize()
method (see Section 4). For volatile dependencies, which allow dependen-
cies to be computed dynamically during the computation of the indicator
itself refer to Section 7.3.

8

4.4 Static dependencies

The following methods can be used to define static dependencies:
$self->add_indicator_dependency($indic, $p)
$self->add_arg_dependency($n, $p)
$self->add_prices_dependency($p)

where $indic is an indicator object, $n refers to the n-th parameter of
the indicator (counting from 1), and $p is the number of (prior) periods
of data this value depends on. The first form states that the current value
of the indicator depends on $p periods of data of indicator $indic. The
second form states that the indicator depends on $p periods of data refer-
enced by parameter $n. The third form states that the indicator depends
on $p periods of data of the input series (this form of dependency is only
needed when the indicator depends on more data periods than is estab-
lished by the dependency mechanism).5

For the Bollinger Bands, each value depends on the current value of
the moving average and the standard deviation. However, dependencies
require at least one day of data, and thus the statements below declare the
current value to be dependent on only 1 day of data of the moving average
and the standard deviation.

25

26 $self->add_indicator_dependency($self->{’sma’}, 1);
27 $self->add_indicator_dependency($self->{’sd’}, 1);

Note that each of these intermediate series in turn require data to be com-
puted, possibly with additional dependency requirements. However, the
definition of these intermediate indicators already include their depen-
dency needs therefore their dependency requirements (if any) are auto-
matically accounted for by the dependency mechanism.

The Bollinger Band indicator also establishes a dependency on the pe-
riod passed as the first parameter, assuming that parameter is constant.
However, this declaration is technically not necessary, as this dependency
is already established by the dependencies of the intermediate series.

28 if ($self->{’args’}->is_constant(1)) {
29 $self->add_prices_dependency($self->{’args’}->get_arg_constant(1));
30 }
31 }

5 While it can be found in a number of indicators, this dependency is rarely (if ever)
actually needed.

9

4.5 Indicator dependency analysis

from multiple gt-devel list emails posted by Thomas Weigert in March 2008

When developing an indicator, with respect to dependencies:

1. first you need to decide whether it makes sense to allow the
period it depends on to vary during the computation of the
indicator.

2. if not, use static dependencies.

3. if so, use volatile dependencies. As a consequence it is imperative
to make sure that the implementation of calculate_interval()
properly handles volatile dependencies.

With regards to the existing indicators, there are some indicators
that will fail when given non-constant parameters for the period(s)
they depend on. To avoid this, two things should be done:

1. if an indicator only supports static dependencies, one should
verify that the given parameter is a constant
(using $self->{args}->is_constant).

2. if an indicator wants to support volatile dependencies, the
calculate_interval() computation needs to either manually retrieve
the changing arguments or forward to calculate.

It turns out that not all these indicators work with non-constant
period parameters either. Two [sic] problems occur:

1. due to protection against non-constant arguments, dependencies
are not defined (example: I:BOL)

2. an intermediate series is defined that depends on a parameter
which is treated as constant in initialize, and therefore,
is defined with incorrect dependencies example: I:BOL)

3. due to lack of protection against non-constant arguments, dependencies
are incorrectly defined as typically huge numbers (example: I:RSquare)

4. when dynamic arguments are passed in, these could be negative,
resulting in bizarre output (example: I:ENV)

5. or these arguments may be real numbers, and the indicator might
not take proper account of these (example: I:AROON; this case
is really subtle: I:AROON actually protects arguments to make
sure they are retrieved even if non-constant, but then in its
computation of MinInPeriod and MaxInPeriod, real numbers are
thrown away as period)

In summary, using dynamically changing parameters for dependency
periods requires that arguments are carefully treated. One needs
to ensure that

10

1. non-constant arguments are correctly retrieved

2. illegal values (e.g. negative) are discarded

3. potentially illegal values (e.g. reals) are converted to integers

Most indicators do not pay attention to these dependency issues,
and assume that the arguments are correct.

5 Calculating the value of the indicator

The GT framework provides two means of calculating the value of an in-
dicator: we can either compute a single value of the indicator, given its
dependencies, or we can compute the value of the indicator throughout a
given interval. One or the other of these methods must be defined6, albeit
often both methods are given. Typically, calculating the value of the indi-
cator over the full interval required will be faster, potentially much faster
as calculating the value of the indicator one period at a time may often
repeat much of the computation needlessly.

5.1 Calculating a single value of the indicator

Define calculate method. The current value of the indicator is computed
by the calculate() method, which takes as arguments a calculator ob-
ject $calc and the current period $i. This method typically follows the
following steps:

32

33 sub calculate {
34 my ($self, $calc, $i) = @_;
35 my $nsd = $self->{’args’}->get_arg_values($calc, $i, 2);
36 my $sma_name = $self->{’sma’}->get_name;
37 my $sd_name = $self->{’sd’}->get_name;
38 my $bol_name = $self->get_name(0);
39 my $bolsup_name = $self->get_name(1);
40 my $bolinf_name = $self->get_name(2);

6 Note that if the calculate() method is omitted, the indicator may fail if this method
is indirectly invoked (e.g. when running anashell.pl), as this method is not defined in the
superclass. It is safer to omit the calculate_interval() method.

11

Define temporary variables. Note that several temporaries are defined
for convenience: The distance of the upper and lower bands from the
moving average, as determined by the second parameter ($nsd), the names
of the intermediate series used ($sma_name and $sd_name), and the names
of the output values ($bol_name, $bolsup_name and $bolinf_name).

Return if the values of the indicator are already available. These may
have been computed earlier, thus there is no need to proceed further.

41

42 return if (
43 $calc->indicators->is_available($bol_name, $i)
44 && $calc->indicators->is_available($bolsup_name, $i)
45 && $calc->indicators->is_available($bolinf_name, $i));

Return if the dependencies required can not be computed. This condi-
tional statement invokes the $self->check_dependencies method, (the
dependency mechanism). It attempts to resolve and then compute all of
this indicators dependencies. The method returns true if it succeeds or
false if one or more of the dependencies cannot be computed.

46 return if (! $self->check_dependencies($calc, $i));

Compute the current value of the indicator. For the Bollinger Band in-
dicator, we first obtain the values of the moving average and the standard
deviation. The upper band is obtained by adding the appropriate factor
of the standard deviation to the moving average; the lower band is calcu-
lated similarly.

47

48 my $sma_value = $calc->indicators->get($sma_name, $i);
49 my $sd_value = $calc->indicators->get($sd_name, $i);
50

51 my $bolsup_value = $sma_value + ($nsd * $sd_value);
52 my $bolinf_value = $sma_value - ($nsd * $sd_value);

Note that computing the current value of the indicator may in fact require
iterating over past periods.

12

Update the output values for the current period. For the Bollinger Band
store the moving average value into the first output series, the upper band
value into the second output series, and the lower band value into the last
output series.

53

54 $calc->indicators->set($bol_name, $i, $sma_value);
55 $calc->indicators->set($bolsup_name, $i, $bolsup_value);
56 $calc->indicators->set($bolinf_name, $i, $bolinf_value);
57 }

5.2 Calculating a the indicator throughout an interval

The calculate_interval() method computes the value of the indicator
over a given interval. It is passed a calculator as well as the beginning and
end of the interval of interest. This method can be obtained systematically
from the calculate() method by the following steps:

1. Change all occurrences of get_arg_values method to the corre-
sponding get_arg_constant() method.

2. Change all occurrences of is_available() method to the corre-
sponding is_available_interval() method.

3. Change all occurrences of check_dependencies() method to the
corresponding check_dependencies_interval() method.

4. Compute the current value of the indicator within a loop over the
interval range (e.g. generally with the time period index variables
$first and $last).

Each of these method changes are highlighted in black in calculate_interval()
listing that follows. Note that the loop (line 74) has a range from $first
to $last

58

59 sub calculate_interval {
60 my ($self, $calc, $first, $last) = @_;
61 my $nsd = $self->{’args’}->get_arg_constant(2);
62 my $sma_name = $self->{’sma’}->get_name;
63 my $sd_name = $self->{’sd’}->get_name;
64 my $bol_name = $self->get_name(0);
65 my $bolsup_name = $self->get_name(1);
66 my $bolinf_name = $self->get_name(2);
67

13

68 return if (
69 $calc->indicators->is_available_interval($bol_name, $first, $last)
70 && $calc->indicators->is_available_interval($bolsup_name, $first, $last)
71 && $calc->indicators->is_available_interval($bolinf_name, $first, $last));
72 return if (! $self->check_dependencies_interval($calc, $first, $last));
73

74 for (my $i = $first; $i <= $last; $i++) {
75 my $sma_value = $calc->indicators->get($sma_name, $i);
76 my $sd_value = $calc->indicators->get($sd_name, $i);
77

78 my $bolsup_value = $sma_value + ($nsd * $sd_value);
79 my $bolinf_value = $sma_value - ($nsd * $sd_value);
80

81 $calc->indicators->set($bol_name, $i, $sma_value);
82 $calc->indicators->set($bolsup_name, $i, $bolsup_value);
83 $calc->indicators->set($bolinf_name, $i, $bolinf_value);
84 }
85 }
86

87 1;

If method calculate_interval() is not provided by a particular indi-
cator module, it is inherited from the indicator object module (GT::Indicators)
which simply calls calculate() for each time-period index in the inter-
val. Typically, a provided calculate_interval() method would not in-
voke the calculate() method directly since there is nothing to be gained
over the inherited version.

6 Module end of file

As common practice in Perl modules, conclude the file with a perl ‘true’
value (line 87).

7 Additional capabilities

There are a number of additional tools provided by GT which are not
leveraged in the Bollinger Bands indicator illustrated above. These are
discussed below.

14

7.1 Temporary series

In addition to storing results in output values, as discussed in Section 3,
an indicator may also store data into temporary series that are not visible
outside of the indicator. To create a temporary series, assign the I:G:Container
indicator to an attribute of the indicator object. For example:

my $name = $self->get_name;
$self->{’temp’} = GT::Indicators::Generic::Container->new(
["temp($name)"]);

The example creates a new temporary series with the name temp($name),
where $name has been assigned the first argument from the @NAMES array.
(get_name() without parameter defaults to first argument) (refer to Sec-
tion 3 for details of the @NAMES clause). The reason for inserting $name(parent
indicators’ name) into the name of the temporary series indicator is to
ensure its uniqueness. Often this will not matter, but if several instances
of this indicator are used at the same time, collisions may occur (for ex-
ample, when this indicator is used in the long and short signals of a [GT-
trading] system or a closestrategy).

This temporary series is an indicator and thus values can be read and
written to this series as to any indicator:

$calc->indicators->get($self->{’temp’}->get_name, $i)
$calc->indicators->set($self->{’temp’}->get_name, $i, $value)

7.2 Constructing intermediate series from other series

An intermediate series may rely on another intermediate series, on a tem-
porary series, or on an output series. In this situation, when defining an
intermediate series, the dependent series are provided as parameters.

For example, to define a standard moving average of the upper band
of the Bollinger Band indicator (within the computation of the Bollinger
Band indicator) use:

$self->{’upper’} = GT::Indicators::SMA->new(
[$self->{’args’}->get_arg_names(1),

"{I:Generic:ByName " . $self->get_name(1) . "}"
]);

15

This constructs an intermediate SMA from the second output series of
the current indicator, with the period taken from the first parameter of
the current indicator and assigns it to an attribute of the indicator object.
The indicator I:Generic:ByName references another series by its name
(i.e. the name of the first output series, see Section 3). Care must be taken
that the correct name is used.

Similarly one can construct a series that depends on a temporary se-
ries or an intermediate series. For example, the simple moving average of
the temp indicator from Section 7.1 is defined as follows:

$self->{’sma1’} = GT::Indicators::SMA->new(
[$self->{’args’}->get_arg_names(1),

"{I:Generic:ByName temp}"
]);

The further smoothing of the simple moving average of the upper Bollinger
Band (see first example this section 7.2) can be defined by:7 8

$self->{’sma2’} = GT::Indicators::SMA->new(
[$self->{’args’}->get_arg_names(1),

"{I:Generic:ByName " . $self->{’upper’}->get_name . "}"
]);

If the intermediate series has multiple outputs and the default value
(first one) is not the desired value the name used must refer to the correct
output value to be accessed. The method $indicator_object->get_name($n)
(from GT::Indicator) can be used to construct a series based on the n-th
output value of the intermediate series defined by the specified $indicator_object.
Two examples: the first from GT::Indicators::ADX

$self->{’sma’} = GT::Indicators::SMA->new(
[$self->{’args’}->get_arg_names(1),

"{I:Generic:ByName ". $self->get_name(3) . "}",
]);

and the second from GT::Indicators::VOSC
$self->{’sma’} = GT::Indicators::SMA->new
([$self->{’args’}->get_arg_names(1),

"{I:Generic:ByName ". $self->get_name(1) ."}"
]);

7 This requires a correction to the I:Generic:ByName indicator available from the mail-
ing list archives at http://geniustrader.org/lists/devel/msg02362.html.

8 committed to GT trunk r573 as of 03/18/2008.

16

7.3 Volatile dependencies

It is also possible for indicator dependencies to dynamically change dur-
ing the computation of a series, either by the length of the dependency
being computed at each iteration, or by it depending on the value of a
series. Dynamically changing dependencies are referred to as volatile de-
pendencies. They are defined analogously to static dependencies using
the following methods

$self->add_volatile_indicator_dependency($indic, $p)
$self->add_volatile_arg_dependency($n, $p)
$self->add_volatile_prices_dependency($p)

where $indic is an indicator object, $n refers to the n-th parameter of the
indicator (counting from 1), and $p is the number of periods of data this
value depends on.

Before defining volatile dependencies, all volatile dependencies from
the previous period must be removed through calling

$self->remove_volatile_dependencies()

Volatile dependencies are mostly useful only when indicators are cal-
culated one period at a time (i.e. in the calculate() method).9

7.4 Accessing Volatile Dependency Arguments

paraphrased from gt-devel list email posted by Thomas Weigert March 2008

If an indicator wants to support volatile dependencies, it must en-
sure that all non-constant parameters are correctly retrieved. That can
be done only via $self->{args}->get_arg_values which requires a cal-
culator object and the period from which to retrieve that value. In partic-
ular, when using $calculate_interval(), one has to retrieve the proper
values of the parameter for all periods the indicator is calculated for (this
requires explicitly iterating over the series and obtaining that value).

An indicator can verify that arguments are, in fact, constants using the
method $self->{args}->is_constant.

9 Note that several indicators add volatile indicators in the calculate_interval()
method. This will work only if careful attention is paid to that the dependency period
is correctly obtained. In many such situations, the dependency period is established cor-
rectly only when the corresponding parameter is both constant and positive. Further,
unless the dependencies are updated throughout the loop, they reduce to static depen-
dencies (in those situations, if calculate() is desired to support volatile dependencies, it
is useful to define the volatile dependencies also in calculate_interval() to avoid du-
plicated dependency computation in calculate() where static dependencies defined).

17

8 Styles of calculating indicators

The value of an indicator can be arrived at using any of three ways:

• by obtaining the value of an input data series, or
• by applying an indicator to a data series (either as an input series or

as a temporary output series), or
• by performing some computation on the current or prior values of

one or more available data series.

These can be combined in arbitrary ways. The example Bollinger Band
indicator used each of these. It obtains the value of an input data series
(I:Prices CLOSE) and applies two indicators (SMA, StandardDeviation) to
these values, and then performs a calculation on the current value of these
intermediate data series (indicators).

Other indicators require more complicated scenarios: For example,
an indicator may require a smoothing of the calculated value (as in the
Stochastic Oscillator (I:STO), the Fisher indicator (I:FISH), the Volume Os-
cillator (I:VOSC) or the Stochastic Momentum Indicator (I:SMI). Examin-
ing the Stochastic Momentum Indicator implementation; it first obtains
values from an input series and applies an indicator to these values. It
then performs some calculation to produce a temporary series, and ap-
plies smoothing to the temporary serie(s). Lastly I:SMI performs some
additional computation on the smoothed temporary data, and applies a
final smoothing to the result to establish SMI value(s).

These more complicated indicator calculations, as illustrated in the
I:SMI description, can be constructed using the methodology outline be-
low. Following the methodology a descriptive example based on I:VOSC
is presented. First analyze the dependencies required by each step in
theindicator calculation. Start the calculation at the earliest point in the
chain of dependencies.

1. The current or previous value of an indicator can always be obtained
as described above.

2. If an indicator application is not the final step, then calculate the
value of that indicator starting from the earliest period it satisfies a
dependency for subsequent computations up to the current period.

18

3. If a computation on current or past values of one or more series is
not the final step, then calculate all subsequent values in a loop from
the earliest period the computation satisfies a dependency for sub-
sequent computations up to the current period.

For example, in the GT::Indicator::VOSC the @NAMES clause is
@NAMES = ("VOSC[#1]", "VOSC-volume[#1]");

The GT::Indicator::VOSC indicator computes the volume oscillator using
the calculate() method listed below. The calculation is performed by
first computing the value of the volume at line 23 and then smoothing
that value with an SMA using a period given by the first parameter to the
indicator (e.g. ‘VOSC[#1]’). The smoothing is performed after the compu-
tation of the volume value (lines 10 .. 25). Thus the indicator first com-
putes sufficient data values for the smoothing operator in the loop (lines
11 .. 25). Line 27 applies the smoothing operator and finally the I:VOSC[#1]
output value is computed (line 29).

1 sub calculate {
2 my ($self, $calc, $i) = @_;
3 my $vosc_name = $self->get_name(0);
4 my $volume_name = $self->get_name(1);
5 my $volume = 0;
6

7 return if ($calc->indicators->is_available($vosc_name, $i));
8 return if (! $self->check_dependencies($calc, $i));
9

10 my $nb_days = $self->{’args’}->get_arg_values($calc, $i, 1);
11 for (my $n = 0; $n < $nb_days; $n++) {
12

13 next if $calc->indicators->is_available($volume_name, $i - $n);
14 if ($calc->prices->at($i - $n)->[$CLOSE] > $calc->prices->at($i - $n)->[$OPEN]) {
15 $volume = $calc->prices->at($i - $n)->[$VOLUME];
16 }
17 if ($calc->prices->at($i - $n)->[$CLOSE] < $calc->prices->at($i - $n)->[$OPEN]) {
18 $volume = -$calc->prices->at($i - $n)->[$VOLUME];
19 }
20 if ($calc->prices->at($i - $n)->[$CLOSE] eq $calc->prices->at($i - $n)->[$OPEN]) {
21 $volume = 0;
22 }
23 $calc->indicators->set($volume_name, $i - $n, $volume);
24

25 }
26

27 $self->{’sma’}->calculate($calc, $i);
28 my $vosc_value = $calc->indicators->get($self->{’sma’}->get_name, $i);

19

29 $calc->indicators->set($vosc_name, $i, $vosc_value);
30 }

The transformation to the calculate_interval() method is similar
to that as described for the BOL example in Section 5.2 with the exception
that the bounds of any loop used in calculate() will have to take the
required data history into account.

For an example of a more complex indicator as well as for the trans-
formation of the calculate_interval() method see the Stochastic Mo-
mentum Indicator GT::Indicator::SMI module.

9 Documentation

9.1 POD — plain old documentation

Adequate documentation in pod format should be provided for each indi-
cator. In general pod should describe the indicator from the users point-
of-view. Meaning the pod should define each of the arguments that are
used by the indicator and the default values, if any, This discussion should
be from the stand-point of a user of the indicator rather than from a pro-
grammers view. In other words the usage should be in terms of typical GT
sys-sig-indic descriptions. It is up to the pod writer if a discussion of the
computation is included. Also example usage, again from an end-user
view is optional. This can include specific graphic.pl graphic directives
and sys-sig-indic description for use by scan.pl, display_indicator.pl, back-
test.pl, etc.

GT convention puts overall indicator10 (module) pod between the end
of the files’ front-matter, (e.g. variable declarations) and the first subrou-
tine in the module. So for the GT::Indicator::BOL example indicator pod
would conventionally be inserted between lines 13 and 15.

13 @NAMES = ("BOL[#1,#3]","BOLSup[#1,#2,#3]","BOLInf[#1,#2,#3]");
14

15 <traditional location of general indicator module pod>
16

17 sub initialize {

10 actually all GT module files
20

General indicator (module) pod format typically has this sort of general
organization, but this is prior convention not policy:

=head2 <module name>

=head2 <indicator discussion overview etc>

=head2 <calculation>

=head2 <examples>

=cut

While it isn’t essential that a blank line follow ‘=cut’ it does help with
some pod formatters. But this practice has not been a GT coding conven-
tion until lately.

Another GT pod convention sometimes adds pod ahead of each sub-
routine. This pod usually indicates the call format of the subroutine along
with some context describing the purpose/use of it. This description might
even go so far as describing the parameters the subroutine expects and if
any are optional. In the case of the I:BOL example the following might be
placed between lines 31 and 33:

31 }
32

33 =head2 C<< GT::Indicators::BOL::calculate($calc, $day); >>
34

35 Calculate the I:BOL values for time-period index $day using the calculator object $calc.
36

37 =cut
38

39 sub calculate {

These are just prior GT conventions, for the ease of module mainte-
nance it may make more sense to put the bulk of the pod at the bottom of
the module file. The most important thing is to provide pod that is useful,
and that is the hard part.

9.2 Code Commentary

If you want the GT community to embrace your new GT module it is im-
portant to provide a modicum of descriptive design intent in the form of
embedded comments. This is especially important for code where the
operation is obvious but the reason to do so may be unclear, or be for an
exception rather than a normal case or condition.

21

10 Indicator Testing

The GT toolkit currently provides very limited testing infrastructure. This
section attempts to describe approaches that can be used to evaluate and
prove (or more succinctly demonstrate) an indicator module is functional
and functioning correctly.

10.1 Manual checking versus dedicated tests

GT application Script display_indicator.pl with appropriate arguments
might be useful in manually checking the functionality of an ‘in-development’
indicator, however, there are no provisions to force selection of method
calculate() vice the calculate_interval() method. (But refer to the
GT Scripts/t directory for a preliminary set of scripts that do exercise each
of these methods for result comparison).

Therefore, it is most reasonable to write a specific test program (actu-
ally a perl test script) for a particular indicator. It is suggested these be lo-
cated in a new subdirectory named ‘t’ in the GT directory, and named after
the base indicator. It is also suggested that subdirs be created to segregate
test scripts by module type or by primary operational testing (e.g. indi-
cators, signals, prices, graphic_objects, cs (closestrategies), of (orderfac-
tory), etc). For example GT/t/indicators/BOL.t, GT/t/indicators/VOSC.t,
GT/t/cs/stop-fixed.t, GT/t/cs/010_stop_sar.t, GT/t/cs/020_stop_sar.t. If
muliple test scripts are needed some sort of suffix might be added, for
example GT/t/indicators/BOL_1.t GT/t/indicators/BOL_2.t, or a 3 digit
prefix might be devised as in the GT/t/cs/DDD_stop_sar.t examples.

10.2 Minimal coding validation

For each indicator module all basic user-application-interface operations
should be verified such as:

• the module uses the built-in default arguments.
• the module accepts and uses user provided arguments.
• the module handles invalid user provided arguments in an accept-

able manner

It’s up to the module author to determine the meaning of in an acceptable
manner.

Verifing indicator results is somewhat more complex and is not yet
covered in the following subsections.

22

10.3 calculate() Method Testing

—to be supplied—

10.4 calculate_interval() Method Testing

—to be supplied—

10.5 Comparing calculate() and calculate_interval() Results

For any given indicator methods calculate() and calculate_interval()
should yield identical results for each time-period with possible excep-
tions when the time-period is at or within a dependency time-period range
at the start of the data series (usually GT::Prices), but this can happen for
any intermediate dependency data series object.

The perl code in the GT Scripts/t directory is an initial attempt to de-
velop a general methodology to perform calculate() and calculate_interval()
result comparisons. note this code hasn’t had a lot of attention and there-
fore it needs a bit (well more than a bit, more like 128 bits or more) of
work . . .

10.6 indicator testing infrastructure

In order to implement a (reasonably) portable indicator testing (and other
GT toolkit) facility two indispensible elements are required as part of the
testing methodology.

• prices data.
• gt configuration data (e.g. equivalent of $HOME/.gt/options).

23

The GT::DB::Text module along with various market data files can suf-
fice for all testing needs excluding the unused GT::DB modules.

The sample market data files (http://geniustrader.org/examples/data.tar.gz)
can be used or additional files can be supplied as part of a specific test
package. It is suggested that test prices data be installed at GT/t/data,
which is consistent with test infrastructure code that will be introduced.

The gt configuration data is only slightly more troublesome, and can
be solved in a couple of ways that are reasonably efficient, practical and
available now. In addition, they don’t interfer (or interact) so both may be
used concurrently without conflict. Implement your tests with which ever
one you prefer. The default test options pathname is GT/t/options 10.6, if
your testing requires changing it there are (at least) 3 options [ordered by
the revising authors’ preference]:

1. provide an add-on file (load into your tests using GT::Conf::load()),
2. create a custom version of the test options file,
3. you can request a revision of the default (ras@acm.org)

The first employs the GT::Test module11 which can be used to essentially
include the desired gt configuration data key-value pairs as a “here” doc-
ument in the test script file. The advantage of this approach is the test
script is self-contained. The disadvantage is each test script requires the
duplication of all the necessary gt configuration data.

GT::Test module use example. A example GT::Test module test script
file is presented here. GT indicator authors wishing to provide test scripts
can choose to adopt this style of indictor module testing.

#!/usr/bin/env perl

use strict;
use lib ’..’;

use GT::Calculator;
use GT::DateTime;
use GT::Prices;

11originally developed within the CPAN’ed version of GT, an unCPANized version is at-
tached as Appendix B

24

use GT::Test
tests => 46,
gt_config => sub {

my $test_base = shift;
my $db_path = File::Spec->catdir($test_base, ’data’);

<<"EOF";
DB::module Text
DB::text::file_extension _\$timeframe.txt
DB::text::directory $db_path
EOF

};

my ($calc, $first, $last) = GT::Tools::find_calculator(
GT::Test->gt_db, ’TX’, $PERIOD_5MIN, 1);

<write perl Test::More test statements here>

The second approach simply creates an option file for a test or a group of
tests. The advantage is less duplication of gt configuration data (in fact
many test scripts will use the same ‘common’ file). The disadvantages in-
clude the need to create and maintain yet another file and the probability
that some data values will be non-portable. In the example file there are a
number of examples of this issue including the pathname values for keys
DB::text::directory, Path::Aliases::Indicators and the various Path::Font::*.
Unfortunately, the current GT toolkit fails to expand any environmental
variable reference in files loaded via GT::Conf::load. Whether a key-value
pathname value is relative to the current working directory or something
else is not something known, but could easily be evaluated by the very
interested . . .

Solutions to hard-paths in the default GT/t/options file:

1. create and load an auxillary options file
2. set the key DB::text::directory value appropriately in the test script

itself using the GT::DB::Text::set_directory method
my $db = create_standard_object("DB::Text");
$db->set_directory("../GT/t/data");

It is suggested that a test script run correctly with the current working
directory set to Scripts or GT.

25

Module test script example. A strawman GT Indicator test script exam-
ple file is presented here. GT indicator authors wishing to provide test
scripts can choose to adopt this style of indictor module testing.

#!/usr/bin/eval perl

use Test::More;
use Test::Differences;
use Data::Dumper;

use lib ’..’;
use GT::Conf;
use GT::Eval;
use GT::DateTime;

my $opt_file = ’../GT/t/options’;
my $timeframe = $DAY;

my $code = 13000; # sample database first date=1993-01-04
my $mid_date = ’1998-01-02’;
my $object;

GT::Conf::clear();
GT::Conf::load("$opt_file");
my @object_types = ();

< write gt code to setup module for testing >
< write perl Test::More tests here >

The default GT/t/options file: The strawman default GT/t/options file is
presented here. It’s use it suggested for those GT indicator authors wish-
ing to provide test scripts.

#
genius trader test suite options file
#

DB::timeframes_available day,week,month,year

DB::module Text
DB::text::format 0 # 3 is default (for Text)
DB::text::directory /usr/local/src/genius_trader/sample_data

Brokers::module SelfTrade

Path::Font::Arial /usr/openwin/lib/X11/fonts/TrueType/Arial.ttf
Path::Font::Courier /usr/openwin/lib/X11/fonts/TrueType/VeraMono.ttf
Path::Font::Times /usr/openwin/lib/X11/fonts/TrueType/TimesNewRoman.ttf

26

Path::Font::LucidaTypewriter /usr/openwin/lib/X11/fonts/TrueType/LucidaTypewriterRegular.ttf

Analysis::ReferenceTimeFrame year

Graphic::Histogram::Color lightblue
Graphic::ForegroundColor black

Aliases::Global::TFS SY:TFS 50 10|CS:SY:TFS
Aliases::Global::TFS[] SY:TFS #1 #2|CS:SY:TFS #1|CS:Stop:Fixed #3

Path::Aliases::Indicators /usr/local/src/genius_trader/ind_aliases
Aliases::Indicators::PVOL_opt {I:Prices VOLUME}
Aliases::Global::TFS13[] SY:TFS #9 #10 | CS:SY:TFS #11 | CS:Stop:Fixed #13

GT::Conf::Test hello, world!

GT::Options::Version Revision: 1.1

10.7 Hard to Detect, Diagnose, and Isolate Bugs

A word or two about GT::Indicator gottchas. If the indicator relies on an-
other GT::Indicator for one of its input data series its results are neces-
sarily dependent on the other indicators’ correctness in order to generate
correct results. Diagnosing this type of problem can be challenging with-
out writing tests for each intermediate step of the indicator calculation
or writing tests for (all) other dependent indicators. The following para-
graphs identify the source of some of the most difficult to detect, diagnose
and solve bugs documented to date.

Data Series Gottchas Computing dependency time-period indices rel-
ative to an initial index (typically $i or sometimes $n) by repeated decre-
menting the value (i.e. stepping backwards in time). This approach can be
problematic when the index value goes negative (e.g. less than zero). Perl
will happily apply a negative index to an array access and thereby access
the array element from the other end of the array, not usually what you
want, certainly not usually expected in terms of programmatic operation,
etc. However, because the data array access succeeds, the calculation pro-
ceeds as if nothing out-of-the-ordinary has happened, but the indicator is
most likely using invalid data.

27

This type of error can be easy to overlook, extremely hard to detect,
and even harder to diagnose especially if it isn’t caused by the indicator
under test or development, but is from a dependency indicator.

Examples of this sort of data series index calculation methodology are
easily found in many of the GT::Indicators modules. Whether any par-
ticular one has the potential to cause adverse effects is the unanswered
question.

Ways to detect when testing an indicator modules results:

• run multiple test cases where dependencies are deliberately set be-
yond the start of available data series.

• check indicator values at the start of the time period for consistency
— a large difference between two adjacent values might indicate a
input value discontinuity.

• —to be provided—

Ways to avoid:

• never ever assign from an array with a negative index. (e.g. check
array indices >= 0)

• —to be provided—

28

A Example GT::Indicator::BOL source listing

The complete source file listing of the BOL indicator source code used
as the example indicator is provide here for reference. Be aware that it
has been ‘sanitized’ for inclusion in this document — all pod has been
removed as well as all comments. In addition, note that this version dif-
fers significantly from any version at the head of any GT branch (as of q3
2011).

1 package GT::Indicators::BOL;
2

3 use strict;
4 use vars qw(@ISA @NAMES @DEFAULT_ARGS);
5

6 use GT::Indicators;
7 use GT::Indicators::SMA;
8 use GT::Indicators::StandardDeviation;
9 use GT::Prices;

10

11 @ISA = qw(GT::Indicators);
12 @DEFAULT_ARGS = (20, 2, "{I:Prices CLOSE}");
13 @NAMES = ("BOL[#1,#3]","BOLSup[#1,#2,#3]","BOLInf[#1,#2,#3]");
14

15 sub initialize {
16 my ($self) = @_;
17

18 $self->{‘sma’} =
19 GT::Indicators::SMA->new([$self->{’args’}->get_arg_names(1),
20 $self->{’args’}->get_arg_names(3)]);
21 $self->{’sd’} =
22 GT::Indicators::StandardDeviation->new(
23 [$self->{’args’}->get_arg_names(1),
24 $self->{’args’}->get_arg_names(3)]);
25

26 $self->add_indicator_dependency($self->{’sma’}, 1);
27 $self->add_indicator_dependency($self->{’sd’}, 1);
28 if ($self->{’args’}->is_constant(1)) {
29 $self->add_prices_dependency($self->{’args’}->get_arg_constant(1));
30 }
31 }
32

33 sub calculate {
34 my ($self, $calc, $i) = @_;
35 my $nsd = $self->{’args’}->get_arg_values($calc, $i, 2);
36 my $sma_name = $self->{’sma’}->get_name;
37 my $sd_name = $self->{’sd’}->get_name;
38 my $bol_name = $self->get_name(0);

29

39 my $bolsup_name = $self->get_name(1);
40 my $bolinf_name = $self->get_name(2);
41

42 return if (
43 $calc->indicators->is_available($bol_name, $i)
44 && $calc->indicators->is_available($bolsup_name, $i)
45 && $calc->indicators->is_available($bolinf_name, $i));
46 return if (! $self->check_dependencies($calc, $i));
47

48 my $sma_value = $calc->indicators->get($sma_name, $i);
49 my $sd_value = $calc->indicators->get($sd_name, $i);
50

51 my $bolsup_value = $sma_value + ($nsd * $sd_value);
52 my $bolinf_value = $sma_value - ($nsd * $sd_value);
53

54 $calc->indicators->set($bol_name, $i, $sma_value);
55 $calc->indicators->set($bolsup_name, $i, $bolsup_value);
56 $calc->indicators->set($bolinf_name, $i, $bolinf_value);
57 }
58

59 sub calculate_interval {
60 my ($self, $calc, $first, $last) = @_;
61 my $nsd = $self->{’args’}->get_arg_constant(2);
62 my $sma_name = $self->{’sma’}->get_name;
63 my $sd_name = $self->{’sd’}->get_name;
64 my $bol_name = $self->get_name(0);
65 my $bolsup_name = $self->get_name(1);
66 my $bolinf_name = $self->get_name(2);
67

68 return if (
69 $calc->indicators->is_available_interval($bol_name, $first, $last)
70 && $calc->indicators->is_available_interval($bolsup_name, $first, $last)
71 && $calc->indicators->is_available_interval($bolinf_name, $first, $last));
72 return if (! $self->check_dependencies_interval($calc, $first, $last));
73

74 for (my $i = $first; $i <= $last; $i++) {
75 my $sma_value = $calc->indicators->get($sma_name, $i);
76 my $sd_value = $calc->indicators->get($sd_name, $i);
77

78 my $bolsup_value = $sma_value + ($nsd * $sd_value);
79 my $bolinf_value = $sma_value - ($nsd * $sd_value);
80

81 $calc->indicators->set($bol_name, $i, $sma_value);
82 $calc->indicators->set($bolsup_name, $i, $bolsup_value);
83 $calc->indicators->set($bolinf_name, $i, $bolinf_value);
84 }
85 }
86

87 1;

30

B GT::Test module source listing

package GT::Test;

use strict;
use warnings;
use base ’Test::More’;
use FindBin;
use File::Temp;
use GT::Conf ();
use GT::Eval ();
our @EXPORT = qw(play_prices_until);

=head1 NAME

GT::Test - Test helpers for GeniusTrader

=head1 SYNOPSIS

use GT::Test
tests => 2,
gt_config => sub {

my $test_base = shift;
my $db_path = File::Spec->catdir($test_base, ’data’);
return "DB::module Text\nDB::text::directory $db_path\n"

};

my ($calc, $first, $last) = GT::Tools::find_calculator(
GT::Test->gt_db, ’TX’, $PERIOD_5MIN, 1)

ok($calc);

my ($q, $calc, $first, $last) = GT::Tools::calculator(
GT::Test->gt_db, ’TX’, $DAY, 1)

ok($calc);

=head1 DESCRIPTION

This module provides helper functions for writing GT tests.

=cut

my ($gt_options, $gt_db);

sub import_extra {
my ($class, $args) = @_;
$class->setup(@$args);
Test::More->export_to_level(2);

}

31

sub setup {
my ($class, %args) = @_;
my ($test_base) = $FindBin::Bin =~ m{(.*/t/*)};
my $dir = File::Spec->catdir($test_base, ’data’);
$class->prepare_gt_conf($dir, $args{gt_config}->($test_base));
GT::Conf::load($class->gt_options);

}

sub gt_options {
my ($class) = @_;
$gt_options ||= File::Temp->new;

}

sub gt_db {
$gt_db ||= GT::Eval::create_db_object();

}

sub prepare_gt_conf {
my ($self, $db_path, $gt_config) = @_;
open my $fh, ’>’, $self->gt_options or die $!;
print $fh $gt_config;

}

1;

32

	Introduction
	Header
	Package definition and object initialization
	Including dependent packages
	Input parameters

	Output values
	Initialization Method
	Intermediate series
	Intermediate data series computation
	Dependencies
	Static dependencies
	Indicator dependency analysis

	Calculating the value of the indicator
	Calculating a single value of the indicator
	Calculating a the indicator throughout an interval

	Module end of file
	Additional capabilities
	Temporary series
	Constructing intermediate series from other series
	Volatile dependencies
	Accessing Volatile Dependency Arguments

	Styles of calculating indicators
	Documentation
	POD — plain old documentation
	Code Commentary

	Indicator Testing
	Manual checking versus dedicated tests
	Minimal coding validation
	calculate() Method Testing
	calculate_interval() Method Testing
	Comparing calculate() and calculate_interval() Results
	indicator testing infrastructure
	Hard to Detect, Diagnose, and Isolate Bugs

	Example GT::Indicator::BOL source listing
	GT::Test module source listing

