
Contents

1



1 Optimize the performance of Geniustrader

This module can be used to improve the performance of any program using the
GeniusTrader modules (e.g. the scripts graphic.pl, backtest.pl, ...).

To use the module you have to make sure that you have write permission
for the directory the variable $newpath points to.

Next you have to insert the following two lines above any other use- or
require-statement that includes a GT-module:

use OptimizeGT;

use lib $OptimizeGT::newpath;

Now you can use the script the normal way. When you �rst call the script
this module will need a little bit of time to do some optimization stu� but
therefore the next run will be much faster.

If you normally don't change your version of GT but simply use it, then you
can set the variable $PERIODIC_UPDATE to a higher value. If this variable is
non-zero the script is looking only every $PERIODIC_UPDATE seconds for an
update of the GT-modules. In this case it might be that changes on a module
are not detected and a old version is use instead!

Warning

This module is using regular expressions to modify the GT modules source code
on disk. This might lead to a problem if the one of the function names that
should be replaced is osed in a di�erent context.

If your program produces an error you don't understand please you should
try to comment out the two lines mentioned above.

2



2 analyze_backtest.pl

SYNOPSIS

./analyze_backtest.pl

OPTIONS

�set=SETNAME

Restricts the analysis to a speci�c set. A set is simply an identi�er that you
put on data when you add it to the "backtests" directory (refer to your op-
tions �le for the location of this directory) when using backtest_many.pl.
Using the �set option you can di�erentiate between the di�erent backtest
results in your directory.

�template=<template �le>

Output is generated using the indicated HTML::Mason component. For
Example, �template="analyze_backtest.mpl" The template directory is
de�ned as Template::directory in the options �le. Each template can
be prede�ned by including it into the options �le For example, Tem-
plate::analyze_backtest analyze_backtest.mpl

�options=<key>=<value>

A con�guration option (typically given in the options �le) in the form
of a key=value pair. For example, �option=DB::Text::format=0 sets the
format used to parse markets via the DB::Text module to 0.

DESCRIPTION

This tool runs an analysis against existing backtest spool �les. The location of
the spool �les is de�ned as BackTest::Directory in the options �le.

3



3 Analyzer - Shell

The command help shows you a comprehensive summary of the available com-
mands:

anashell> help
By typing set without a parameter it will show you the current settings:
anashell> set Settings: expert => 1 code => 13000 system => Systems::Generic

{S:Generic:CrossOverUp {I:SMA 20} {I:SMA 60}} {S:Generic:CrossOverDown
{I:SMA 20} {I:SMA 60}} broker => InteractiveBrokers �rst => auto tf =>
OneTrade full => 0 last => auto mm [0] => Basic cs => OppositeSignal

Most of the settings are very easy to understand:

expert => 1

If set to 1 every command that can't be interpreted by the internal

parser is interpreted by perl.

code => 13000

The code :)

system => Systems::Generic {S:Generic:CrossOverUp {I:SMA 20} {I:SMA 60}}

{S:Generic:CrossOverDown {I:SMA 20} {I:SMA 60}}

The System to test

broker => InteractiveBrokers

The broker

first => auto

last => auto

Can be set to a date; auto results in the same settings as in

backtest.pl

tf => OneTrade

mm [0] => Basic

cs => OppositeSignal

Tradefilters, Money-Management and Closing-Strategies

full => 0

Test the full history?

For our backtest we want to test the full history so we use:
anashell> set full 1
And we add one more closing-strategy by using the following command:
anashell> set +cs Stop::KeepRunUp 10
(set cs[1] Xxxxx would have changed the second array element) After this

we start the backtest...
anashell> btest Tested ... ok in 104 seconds
...and view the result:
anashell> report report_summary.ash

4



By using the HTML::Mason-framework you can generate every report you
want...

Now we can save the system to a directory
anashell> save TEST /tmp Saved TEST in /tmp...
So that we can load it the next time we start a session:
anashell> load TEST /tmp Loaded Portfolio TEST...
If we don't know the name of our system we can list all systems in the

directory:
anashell> list /tmp ==> SY:Generic {S:Generic:CrossOverUp {I:SMA 20

{I:Prices CLOSE}} {I:SMA 60 {I:Prices CLOSE}}} {S:Generic:CrossOverDown
{I:SMA 20 {I:Prices CLOSE}} {I:SMA 60 {I:Prices CLOSE}}}|TF:OneTrade
50|CS:OppositeSignal|CS:Stop:KeepRunUp 10 �> 13000

Now let's do some analysis on the backtest:
First I would like to know the costs for each trade
anashell> calc_array {A:OpenDate} {A:Costs} Number OpenDate[] Costs[]

[ 0] 1993-05-13 20.76 [ 1] 1993-07-01 22.65 [...] [ 34] 2002-01-17 20.3
But we can also calculate the average cost of one trade:
anashell> calc {A:Avg {A:Costs}} 20.1568571428571
- you see it is the same as using an indicator...
Now let's do some graphics (make sure you have R (www.r-project.org) in-

stalled):
anashell> @gain = calc_array("{A:NetGain}") anashell> r_hist( \@gain )
You can also have a look at the distribution of the gains over time:
anashell> r_bar( \@gain )
Or we create a second array and see if there is a correlation between the

Duration of a trade and its gain...
anashell> @duration = calc_array("{A:Duration}") r_corr( \@duration,

\@gain )
Now let's leave the program and save the history for the next session:
anashell> bye Exiting Olf's Analyzer... Save settings? [Y/n]: Y

Requirements

This module needs Term::ReadLine to process the interactive commands.

5



4 ./backtest.pl [ options ] <code>

5 ./backtest.pl [ options ] <system_alias> <code>

6 ./backtest.pl [ options ] "<full_system_name>"
<code>

Description

Backtest will run a backtest of a system on the indicated code.
You can either describe the system using options, give a full system name,

or you can give a system alias. An alias is de�ned in the con�guration �le with
entries of the form Aliases::Global::<alias_name> <full_system_name>.

The full system name consists of a set of properties, such as trade �lters,
close strategy, etc., together with their parameters, separated by vertical bars
("|"). Multiple properties of the same type can be de�ned, e.g., there could be
a set of close strategies. For example, System:ADX 30 | TradeFilters:Trend 2 5 |
MoneyManagement:Normal de�nes a system based on the "ADX" system, using
a trend following trade �lter "Trend", and the "Normal" money management.

The following abbreviations are supported: Systems = SY CloseStrategy =
CS TradeFilters = TF MoneyManagement = MM OrderFactory = OF Signals
= S Indicators = I Generic = G

Another example of a full system name is SY:TFS|CS:SY:TFS|CS:Stop:Fixed
4|MM:VAR.

Options

Backtest provide a set of options, so that you can use a combination of Money-
Management, TradeFilters, OrderFactory an CloseStrategy modules.

�full, �start=<date>, �end=<date>, �nb-item=<nr>

Determines the time interval over which to perform the backtest. In detail:

�start=2001-1-10, �end=2002-11-17

The start and end dates over which to perform the backtest. The
date needs to be in the format con�gured in �/.gt/options and must
match the timeframe selected.

�nb-items=100

The number of periods to use in the analysis.

�full

Consider all available periods.

The periods considered are relative to the selected time frame (i.e., if
timeframe is "day", these indicate a date; if timeframe is "week", these

6



indicate a week; etc.). In GT format, use "YYYY-MM-DD" or "YYYY-
MM-DD hh:mm:ss" for days (the latter giving intraday data), "YYYY-
WW" for weeks, "YYYY/MM" for months, and "YYYY" for years.

The interval of periods examined is determined as follows:

1. if present, use �start and �end (otherwise default to last price)

2. use �nb-item (from �rst or last, whichever has been determined), if
present

3. if �full is present, use �rst or last price, whichever has not yet been
determined

4. otherwise, consider a two year interval.

The �rst period determined following this procedure is chosen. If addi-
tional options are given, these are ignored (e.g., if �start, �end, �full are
given, �full is ignored).

�timeframe=1min|5min|10min|15min|30min|hour|3hour|day|week|month|year

The timeframe can be any of the available modules in GT/DateTime.

�max-loaded-items

Determines the number of periods (back from the last period) that are
loaded for a given market from the data base. Care should be taken to
ensure that these are consistent with the performed analysis. If not enough
data is loaded to satisfy dependencies, for example, correct results cannot
be obtained. This option is e�ective only for certain data base modules
and ignored otherwise.

�template="backtest.mpl"

Output is generated using the indicated HTML::Mason component. For
Example, �template="backtest.mpl" The template directory is de�ned as
Template::directory in the options �le. Each template can be prede�ned
by including it into the options �le For example, Template::backtest back-
test.mpl

�html

Output is generated in html

�graph="�lename.png"

Generate a graph of your portfolio value over the time of the backtest and
display it in the generated html.

�display-trades

Display the trades with little symbols on the graph. This works well if
trades last long enough otherwise your graph will be overwhelmed with
unsigni�cant symbols.

7



�store="portfolio.xml"

Store the resulting portfolio in the indicated �le.

�broker="NoCosts"

Calculate commissions and annual account charge, if applicable, using
GT::Brokers::<broker_name> as broker.

�system="<system_name>"

use the GT::Systems::<system_name> as the source of buy/sell orders.

�money-management="<money_management_name>"

use the GT::MoneyManagement::<money_management_name> as money
management system.

�trade-�lter="<�lter_name>"

use the GT::TradeFilters::<�lter_name> as a trade �lter.

�order-factory="<order_factory_name>"

use GT::OrderFactory::<order_factory_name> as an order factory.

�close-strategy="<close_strategy_name>"

use GT::CloseStrategy::<close_strategy_name> as a close strategy.

�set=SETNAME

Stores the backtest results in the "backtests" directory (refer to your op-
tions �le for the location of this directory) using the set name SETNAME.
Use the �set option of analyze_backtest.pl to di�erentiate between the dif-
ferent backtest results in your directory.

�output-directory=DIRNAME

Override the "backtests" directory in the options �le.

�verbose

�options=<key>=<value>

A con�guration option (typically given in the options �le) in the form
of a key=value pair. For example, �option=DB::Text::format=0 sets the
format used to parse markets via the DB::Text module to 0.

Examples

./backtest.pl TFS 13000

./backtest.pl �full TFS 13000

8



./backtest.pl �close-strategy="Systems::TFS" �close-strategy="Stop::Fixed
6" �money-management="VAR" �money-management="OrderSizeLimit"
�system="TFS" �broker="SelfTrade Intégral" 13000

./backtest.pl �broker="SelfTrade Int�égral" "SY:TFS|CS:SY:TFS|CS:Stop:Fixed
6|MM:VAR|MM:OrderSizeLimit" 13000

9



7 ./backtest_many.pl [ options ] <market �le>
<system �le>

Description

Backtest_many will test all system listed in a system �le on all the values listed
in the market �le.

The <system �le> contains one line per de�ned system, where each sys-
tem is de�ned by its full system name or by an alias. An alias is de�ned in
the con�guration �le with entries of the form Aliases::Global::<alias_name>
<full_system_name>.

The full system name consists of a set of properties, such as trade �lters,
close strategy, etc., together with their parameters, separated by vertical bars
("|"). Multiple properties of the same type can be de�ned, e.g., there could be
a set of close strategies. For example, System:ADX 30 | TradeFilters:Trend 2 5 |
MoneyManagement:Normal de�nes a system based on the "ADX" system, using
a trend following trade �lter "Trend", and the "Normal" money management.

The following abbreviations are supported: Systems = SY CloseStrategy =
CS TradeFilters = TF MoneyManagement = MM OrderFactory = OF Signals
= S Indicators = I Generic = G

Another example of a full system name is SY:TFS|CS:SY:TFS|CS:Stop:Fixed
4|MM:VAR.

Options

�full, �start=<date>, �end=<date>, �nb-item=<nr>

Determines the time interval to consider for analysis. In detail:

�start=2001-1-10, �end=2002-11-17

The start and end dates considered for analysis. The date needs to
be in the format con�gured in �/.gt/options and must match the
timeframe selected.

�nb-items=100

The number of periods to use in the analysis.

�full

Consider all available periods.

The periods considered are relative to the selected time frame (i.e., if
timeframe is "day", these indicate a date; if timeframe is "week", these
indicate a week; etc.). In GT format, use "YYYY-MM-DD" or "YYYY-
MM-DD hh:mm:ss" for days (the latter giving intraday data), "YYYY-
WW" for weeks, "YYYY/MM" for months, and "YYYY" for years.

The interval of periods examined is determined as follows:

1. if present, use �start and �end (otherwise default to last price)

10



2. use �nb-item (from �rst or last, whichever has been determined), if
present

3. if �full is present, use �rst or last price, whichever has not yet been
determined

4. otherwise, consider a two year interval.

The �rst period determined following this procedure is chosen. If addi-
tional options are given, these are ignored (e.g., if �start, �end, �full are
given, �full is ignored).

�timeframe=1min|5min|10min|15min|30min|hour|3hour|day|week|month|year

The timeframe can be any of the available modules in GT/DateTime.

�max-loaded-items

Determines the number of periods (back from the last period) that are
loaded for a given market from the data base. Care should be taken to
ensure that these are consistent with the performed analysis. If not enough
data is loaded to satisfy dependencies, for example, correct results cannot
be obtained. This option is e�ective only for certain data base modules
and ignored otherwise.

�broker="NoCosts"

Calculate commissions and annual account charge, if applicable, using
GT::Brokers::<broker_name> as broker.

�nbprocess=2

If you want to start two (or more) backtests in parallel (useful for machines
with several CPUs for example).

�set=SETNAME

Stores the backtest results in the "backtests" directory (refer to your op-
tions �le for the location of this directory) using the set name SETNAME.
Use the �set option of analyze_backtest.pl to di�erentiate between the dif-
ferent backtest results in your directory.

�options=<key>=<value>

A con�guration option (typically given in the options �le) in the form
of a key=value pair. For example, �option=DB::Text::format=0 sets the
format used to parse markets via the DB::Text module to 0.

Examples

./backtest_many.pl ../Listes/fr/CAC40 ../BackTest/HCB.txt �output-
dir=../BackTest/ �set=HCB �full

11



Example of system description

SY:TFS 50 7|CS:SY:TFS 50|CS:Stop:Fixed 6|MM:VAR 10 2|MM:PositionSizeLimit
100

12



8 ./backtest_multi.pl [ options ] <market �le>
<system �le>

Description

Backtest_many will test all system listed in a system �le on all the values listed
in the market �le.

The <system �le> contains one line per de�ned system, where each sys-
tem is de�ned by its full system name or by an alias. An alias is de�ned in
the con�guration �le with entries of the form Aliases::Global::<alias_name>
<full_system_name>.

The full system name consists of a set of properties, such as trade �lters,
close strategy, etc., together with their parameters, separated by vertical bars
("|"). Multiple properties of the same type can be de�ned, e.g., there could be
a set of close strategies. For example, System:ADX 30 | TradeFilters:Trend 2 5 |
MoneyManagement:Normal de�nes a system based on the "ADX" system, using
a trend following trade �lter "Trend", and the "Normal" money management.

The following abbreviations are supported: Systems = SY CloseStrategy =
CS TradeFilters = TF MoneyManagement = MM OrderFactory = OF Signals
= S Indicators = I Generic = G

Another example of a full system name is SY:TFS|CS:SY:TFS|CS:Stop:Fixed
4|MM:VAR.

Options

�full, �start=<date>, �end=<date>, �nb-item=<nr>

Determines the time interval to consider for analysis. In detail:

�start=2001-1-10, �end=2002-11-17

The start and end dates considered for analysis. The date needs to
be in the format con�gured in �/.gt/options and must match the
timeframe selected.

�nb-items=100

The number of periods to use in the analysis.

�full

Consider all available periods.

The periods considered are relative to the selected time frame (i.e., if
timeframe is "day", these indicate a date; if timeframe is "week", these
indicate a week; etc.). In GT format, use "YYYY-MM-DD" or "YYYY-
MM-DD hh:mm:ss" for days (the latter giving intraday data), "YYYY-
WW" for weeks, "YYYY/MM" for months, and "YYYY" for years.

The interval of periods examined is determined as follows:

1. if present, use �start and �end (otherwise default to last price)

13



2. use �nb-item (from �rst or last, whichever has been determined), if
present

3. if �full is present, use �rst or last price, whichever has not yet been
determined

4. otherwise, consider a two year interval.

The �rst period determined following this procedure is chosen. If addi-
tional options are given, these are ignored (e.g., if �start, �end, �full are
given, �full is ignored).

�timeframe=1min|5min|10min|15min|30min|hour|3hour|day|week|month|year

The timeframe can be any of the available modules in GT/DateTime.

�max-loaded-items

Determines the number of periods (back from the last period) that are
loaded for a given market from the data base. Care should be taken to
ensure that these are consistent with the performed analysis. If not enough
data is loaded to satisfy dependencies, for example, correct results cannot
be obtained. This option is e�ective only for certain data base modules
and ignored otherwise.

�broker="NoCosts"

Calculate commissions and annual account charge, if applicable, using
GT::Brokers::<broker_name> as broker.

�set=SETNAME

Stores the backtest results in the "backtests" directory (refer to your op-
tions �le for the location of this directory) using the set name SETNAME.
Use the �set option of analyze_backtest.pl to di�erentiate between the dif-
ferent backtest results in your directory.

�options=<key>=<value>

A con�guration option (typically given in the options �le) in the form
of a key=value pair. For example, �option=DB::Text::format=0 sets the
format used to parse markets via the DB::Text module to 0.

Examples

./backtest_many.pl ../Listes/fr/CAC40 ../BackTest/HCB.txt �output-
dir=../BackTest/ �set=HCB �full

Example of system description

SY:TFS 50 7|CS:SY:TFS 50|CS:Stop:Fixed 6|MM:VAR 10 2|MM:PositionSizeLimit
100

14



9 ./display_indicator.pl [ options ] <indicatorname>
<code> [args...]

Description

Computes the indicator <indicatorname> on market <code> over the selected
interval.

Options

�full, �start=<date>, �end=<date>, �nb-item=<nr>

Determines the time interval to consider for analysis. In detail:

�start=2001-1-10, �end=2002-11-17

The start and end dates considered for analysis. The date needs to
be in the format con�gured in �/.gt/options and must match the
timeframe selected.

�nb-items=100

The number of periods to use in the analysis. Default is 200.

�full

Consider all available periods.

The periods considered are relative to the selected time frame (i.e., if
timeframe is "day", these indicate a date; if timeframe is "week", these
indicate a week; etc.). In GT format, use "YYYY-MM-DD" or "YYYY-
MM-DD hh:mm:ss" for days (the latter giving intraday data), "YYYY-
WW" for weeks, "YYYY/MM" for months, and "YYYY" for years.

The interval of periods examined is determined as follows:

1. if present, use �start and �end (otherwise default to last price)

2. use �nb-item (from �rst or last, whichever has been determined), if
present

3. if �full is present, use �rst or last price, whichever has not yet been
determined

4. otherwise, consider a two year interval.

The �rst period determined following this procedure is chosen. If addi-
tional options are given, these are ignored (e.g., if �start, �end, �full are
given, �full is ignored).

�timeframe=1min|5min|10min|15min|30min|hour|3hour|day|week|month|year

The timeframe can be any of the available modules in GT/DateTime.

15



�last-record

Display results for the last period only. Overrides any other options given
to determine the interval.

�max-loaded-items

Determines the number of periods (back from the last period) that are
loaded for a given market from the data base. Care should be taken to
ensure that these are consistent with the performed analysis. If not enough
data is loaded to satisfy dependencies, for example, correct results cannot
be obtained. This option is e�ective only for certain data base modules
and ignored otherwise.

�tight

Displays indicator values in concise tabular format.

�options=<key>=<value>

A con�guration option (typically given in the options �le) in the form
of a key=value pair. For example, �option=DB::Text::format=0 sets the
format used to parse markets via the DB::Text module to 0.

Examples

./display_indicator.pl I:SMA IBM 100
./display_indicator.pl �full I:RSI 13000
args (if any) are passed to the new call that will create the indicator.
./display_indicator.pl �nb 10 I:EMA IBM 120

16



10 ./display_signal.pl [ options ] <signalname>
<code> [args...]

Description

Computes the value of signal <signalname> for market <code> over the se-
lected interval.

Options

�full, �start=<date>, �end=<date>, �nb-item=<nr>

Determines the time interval to consider for analysis. In detail:

�start=2001-1-10, �end=2002-11-17

The start and end dates considered for analysis. The date needs to
be in the format con�gured in �/.gt/options and must match the
timeframe selected.

�nb-items=100

The number of periods to use in the analysis. Default is 200.

�full

Consider all available periods.

The periods considered are relative to the selected time frame (i.e., if
timeframe is "day", these indicate a date; if timeframe is "week", these
indicate a week; etc.). In GT format, use "YYYY-MM-DD" or "YYYY-
MM-DD hh:mm:ss" for days (the latter giving intraday data), "YYYY-
WW" for weeks, "YYYY/MM" for months, and "YYYY" for years.

The interval of periods examined is determined as follows:

1. if present, use �start and �end (otherwise default to last price)

2. use �nb-item (from �rst or last, whichever has been determined), if
present

3. if �full is present, use �rst or last price, whichever has not yet been
determined

4. otherwise, consider a two year interval.

The �rst period determined following this procedure is chosen. If addi-
tional options are given, these are ignored (e.g., if �start, �end, �full are
given, �full is ignored).

�timeframe=1min|5min|10min|15min|30min|hour|3hour|day|week|month|year

The timeframe can be any of the available modules in GT/DateTime.

17



�last-record

Display results for the last period only. Overrides any other options given
to determine the interval.

�max-loaded-items

Determines the number of periods (back from the last period) that are
loaded for a given market from the data base. Care should be taken to
ensure that these are consistent with the performed analysis. If not enough
data is loaded to satisfy dependencies, for example, correct results cannot
be obtained. This option is e�ective only for certain data base modules
and ignored otherwise.

�change ( or -c )

show on output only those dates that signal changed

�options=<key>=<value>

A con�guration option (typically given in the options �le) in the form
of a key=value pair. For example, �option=DB::Text::format=0 sets the
format used to parse markets via the DB::Text module to 0.

Arguments

<signalname>

The name of the signal you want to display. This can be any module
under GT/Signals. For instance, S::Generic::CrossOverUp.

<code>

The symbol for which you wish to display the signal. Use whatever sym-
bols are available in your database.

[args...]

Args are passed to the new call that will create the signal. args is a string
that speci�es the signal in gt terms, spaces and other chars that the shell
interprets will need to be quoted in some way.

Examples

./display_signal.pl S:Prices:GapUp IBM
Test for the GapUp signal in symbol IBM. By default, use daily data, and

display the last available 200 periods.
./display_signal.pl �full S:Generic:CrossOverUp EURUSD {I:EMA 50} {I:EMA

200}
Test for the EMA50 crossing over up EMA200. Do the test over the full

available history data.

18



11 ./display_system.pl [ options ] <systemname>
<code> [args...]

Description

Displays the signals generated for the system<systemname> for market<code>
over the selected interval. A system is comprised of a long and a short signal
which are each displayed when they trigger (printing 'long' and 'short', respec-
tively).

Options

�full, �start=<date>, �end=<date>, �nb-item=<nr>

Determines the time interval to consider for analysis. In detail:

�start=2001-1-10, �end=2002-11-17

The start and end dates considered for analysis. The date needs to
be in the format con�gured in �/.gt/options and must match the
timeframe selected.

�nb-items=100

The number of periods to use in the analysis.

�full

Consider all available periods.

The periods considered are relative to the selected time frame (i.e., if
timeframe is "day", these indicate a date; if timeframe is "week", these
indicate a week; etc.). In GT format, use "YYYY-MM-DD" or "YYYY-
MM-DD hh:mm:ss" for days (the latter giving intraday data), "YYYY-
WW" for weeks, "YYYY/MM" for months, and "YYYY" for years.

The interval of periods examined is determined as follows:

1. if present, use �start and �end (otherwise default to last price)

2. use �nb-item (from �rst or last, whichever has been determined), if
present

3. if �full is present, use �rst or last price, whichever has not yet been
determined

4. otherwise, consider a two year interval.

The �rst period determined following this procedure is chosen. If addi-
tional options are given, these are ignored (e.g., if �start, �end, �full are
given, �full is ignored).

�timeframe=1min|5min|10min|15min|30min|hour|3hour|day|week|month|year

The timeframe can be any of the available modules in GT/DateTime.

19



�last-record

Display results for the last period only. Overrides any other options given
to determine the interval.

�max-loaded-items

Determines the number of periods (back from the last period) that are
loaded for a given market from the data base. Care should be taken to
ensure that these are consistent with the performed analysis. If not enough
data is loaded to satisfy dependencies, for example, correct results cannot
be obtained. This option is e�ective only for certain data base modules
and ignored otherwise.

�options=<key>=<value>

A con�guration option (typically given in the options �le) in the form of
a key=value pair. For example, �option=DB::Text::format=0 sets the
format used to parse markets via the DB::Text module to 0.

Arguments

<systemname>

The name of the system you want to test. This can be any module under
GT/Systems.

<code>

The symbol for which you wish to display the signal. Use whatever sym-
bols are available in your database.

[args...]

Args are passed to the new call that will create the system. args is a string
that speci�es the signal in gt terms, spaces and other chars that the shell
interprets will need to be quoted in some way.

Examples

./display_system.pl SY:G IBM {S:G:CrossOverUp {I:Prices CLOSE} {I:EMA}} {S:G:CrossOverDown {I:Prices CLOSE} {I:EMA}}

A long signal is generated when Prices cross up over the EMA, while a short
signal is generated when Prices cross down over the EMA.

20



12 ./graphic.pl [ options | additional graphical el-
ements ] <code>

Synopsis

./graphic.pl [ �timeframe=timeframe ] [ �nb-item=100 ] \ [ �start=2005-06-01 ] [
�end=2006-01-01 ] \ [ �type=candle|candlevol|candlevolplace|barchart|line|none
] \ [ �volume ] \ [ �volume-height=150 ] [ �title="Daily Chart" ] \ [ �width=200
] [ �height=230 ] [ �logarithmic ] \ [ additional graphical elements ] \ [ ��le=conf
] [ �driver={GD|ImageMagick} ] \ [ �out=image�le ] \ <code>

Use "graphic.pl �man" to list all available options

Description

graphic.pl can generate charts in png format, including indicators and system
signals, either as overlays of the original price data, or in di�erent regions of the
chart.

Various options are available to control color, size and other graphic prop-
erties.

Additional Graphical Elements

By default, only the price will be plotted, however, you can add other indicators,
either as overlays or in di�erent zones of the chart.

To plot overlays, simply add them to the graphic. For instance:
�add="Curve(Indicators::EMA 50, blue)" �add="Curve(Indicators::EMA

200, red)"
To plot indicators in a di�erent zone, �rst create a new-zone, then add the

indicators:

--add="New-Zone(100)"

--add="Histogram(I:MACD/3, brown)"

--add="New-Zone(100)"

--add="Curve(I:MACD/1, red)"

--add="Curve(I:MACD/2, green)"

--add="New-Zone(100)"

--add="Set-Scale(0,100)" --add="set-title(RSI,tiny)" \

--add="Curve(Indicators::RSI/3)"

Full details about the available methods you can use with the �add option
follow.

Note that all objects that might a�ect the scale (such as, e.g., an indicator)
must be added to a zone before the scale is changed.

21



New-Zone(height, [left, right, top, bottom])

This creates a new zone for displaying more indicators. It's created with
the given height and the given border sizes.

Switch-Zone(zoneid)

This changes the current display zone. 0 is the main zone, 1 is the volume
zone if it exists. 2 is the �rst indicator zone and so on. Usually you just
need to it switch to the "Volume" zone because you start on the main
zone and you automatically switch to any newly created zone.

Set-Scale(min,max,[logarithmic]) or Set-scale(auto,[logarithmic])

This de�nes the scale for the currently selected zone (by default the last
zone created or the main zone if no zone has been created). If auto scale
is used, the scale must be set after all objects that can a�ect the min or
max values have been added.

Set-Special-Scale(min,max,[log]) or Set-Special-Scale(auto,[log])

The last created object will be displayed with its own scale (and not the
default one of the zone). The scale may be given or it may be calculated
to �t the full zone. If auto scale is used, the scale must be set after all
objects that can a�ect the min or max values have been added.

Set-Axis(tick1,tick2,tick3...)

De�ne the ticks for the main axis of the current zone.

Set-Title{-left|-right|-top|-bottom}(title,font_size)

This adds a title to the currently selected zone. The title will be displayed
in the given size (size can be tiny, small, medium, large and giant). If the
title contains a %c, this is replaced by the <code>, if it contains %n, this
is replaced by the long name of the <code>. See also �/.gt/sharenames,
which contains lines of the form <code>\t<long name> mapping a market
to its long name.

Histogram(<datasource>, [color])

Curve(<datasource>, [color])

Marks(<datasource>, [color])

Mountain(<datasource>, [color])

MountainBand(<datasource1>, <datasource2>, [color])

This adds a new graphical object in the current zone. The datasource
explains what data has to be displayed.

22



Text(text, x, y, [halign, valign, font_size, color, font_face])

This adds a block of text at the given coordinate (expressed in percent of
the width/height of the zone).

halign can be one of "left", "center" or "right". valign can be one of "top",
"bottom" or "center". font_size can be one of "tiny", "small", "medium",
"large" or "giant". font_face can be one of "arial", "times" or "�xed".

BuySellArrows(Systems::...)

This adds buy and sell arrows in the main chart, based on systems signals.

VotingLine(Systems::..., [y])

Show buy and sell arrows in a Voting Line à la OmniTrader, based on
a System Manager. You can indicate the y at which the line should be
displayed.

Datasources

Sometimes you need to pass datasources to the graphical objects. The following
are currently available.

Indicators::<indicatorname>

An indicator.

PortfolioEvaluation(<portfolio>)

This datasources returns the evaluation of any portfolio.

Other Objects

Some datasources may be parameterized by objects. The following are currently
available.

BackTestPortfolio(<systemname>, [directory])

This returns a portfolio that has been saved for a backtest of the system
"systemname". The given directory must be a spool of backtests.

Options

�full, �start=<date>, �end=<date>, �nb-item=<nr>

Determines the time interval used to plot the graphics. In detail:

�start=2001-1-10, �end=2002-11-17

The start and end dates considered for the plot. The date needs
to be in the format con�gured in �/.gt/options and must match the
timeframe selected.

23



�nb-items=100

The number of periods to use to plot the graphics. Default is 120.

�full

Consider all available periods.

The periods considered are relative to the selected time frame (i.e., if
timeframe is "day", these indicate a date; if timeframe is "week", these
indicate a week; etc.). In GT format, use "YYYY-MM-DD" or "YYYY-
MM-DD hh:mm:ss" for days (the latter giving intraday data), "YYYY-
WW" for weeks, "YYYY/MM" for months, and "YYYY" for years.

The interval of periods examined is determined as follows:

1. if present, use �start and �end (otherwise default to last price)

2. use �nb-item (from �rst or last, whichever has been determined), if
present

3. if �full is present, use �rst or last price, whichever has not yet been
determined

4. otherwise, consider a two year interval.

The �rst period determined following this procedure is chosen. If addi-
tional options are given, these are ignored (e.g., if �start, �end, �full are
given, �full is ignored).

�timeframe=1min|5min|10min|15min|30min|hour|3hour|day|week|month|year

The timeframe can be any of the available modules in GT/DateTime.

�max-loaded-items

Determines the number of periods (back from the last period) that are
loaded for a given market from the data base. Care should be taken to
ensure that these are consistent with the performed analysis. If not enough
data is loaded to satisfy dependencies, for example, correct results cannot
be obtained. This option is e�ective only for certain data base modules
and ignored otherwise.

�type=candle|candlevol|candlevolplace|barchart|line|none
The type of graphic to plot. none causes the price not to be displayed,
however, overlays can still be sketched in the graphic.

�volume

Should the volume be plotted (it is by default)? Use �no-volume if you
want to omit it.

�volume-height=150

24



�title="Daily Chart"

�width=200

�height=230

�logarithmic

�driver=GD|ImageMagick

�options=<key>=<value>

A con�guration option (typically given in the options �le) in the form
of a key=value pair. For example, �option=DB::Text::format=0 sets the
format used to parse markets via the DB::Text module to 0.

Con�guration-File ( ��le=conf )

With this option, additional parameters are read from the con�guration�le
conf. Each line in this �le corresponds to a command line parameter. Lines
starting with # are ignored.

�out=image�le

Send image output to speci�ed �le. If not speci�ed, output goes to stdout.

Examples

./graphic.pl �add="Switch-Zone(0)" \ �add="Curve(Indicators::SMA 38, [0,0,255])"
\ �add="Curve(Indicators::SMA 100, [0,255,0])" \ �add="Curve(Indicators::SMA
200, [255,0,0])" \ �title="Daily history of %c" \ 13000 > test.png

./graphic.pl �add="Curve(Indicators::EMA 5,[255,0,0])" \ �add="Curve(Indicators::EMA
20,[0,0,255])" \ �add="BuySellArrows(SY::Generic {S::Generic::CrossOverUp
{I:EMA 5} {I:EMA 20}} {S::Generic::CrossOverDown {I:EMA 5} {I:EMA 20}}
)" \ 13000 > test.png

25



13 manage_portfolio.pl

SYNOPSIS

./manage_portfolio.pl <portfolio> create [<initial-sum>]

./manage_portfolio.pl <portfolio> bought <quantity> <share> \

<price> [ <date> <source> ]

./manage_portfolio.pl <portfolio> sold <quantity> <share> \

<price> [ <date> <source> ]

./manage_portfolio.pl <portfolio> stop <share> <price>

./manage_portfolio.pl <portfolio> set initial-sum <sum of money>

./manage_portfolio.pl <portfolio> set broker <broker>

./manage_portfolio.pl <portfolio> report { performance | positions \

| historic | analysis }

./manage_portfolio.pl <portfolio> file <filename>

./manage_portfolio.pl <portfolio> db

where

<portfolio> is filename of portfolio to use. it can be a non-existent

file, in which case it will be created

<quantity> <price> are numeric values for <share> which is the

appropriate stock symbol or cusip or other identifier

<date> is optional, the date the transaction happened on. if not

supplied the default value for 'today' will be supplied. preferred GT

format for dates is 'YYYY-MM-DD'.

<source> is optional, a text string, it can be used to note the source

of the stock transaction. typically an internal GT used field. for

individual transactions <source> can be set via the --source='string'

option.

<broker> name of broker module to use. see ../GT/Brokers/. there is

no error checking. if the supplied broker module fails to exist the

portfolio will be flawed.

OPTIONS

�marged

Only useful for "bought" and "sold" commands. It explains that the
corresponding positions are marged, no personal money has been used for
them, the money has been rented.

�source <source>

Useful to tag certain orders as the result of a particular strategy. All
orders passed by following the advice of someone could be tagged with his
name and later you'll be able to make stats on the performance you made
with his advices.

26



�template=<template �le>

Output is generated using the indicated HTML::Mason component. For
example, when using "report historic" use

--template="manage_portfolio_historic.mpl"

when using "report positions" use

--template="manage_portfolio_positions.mpl"

The template directory is de�ned as Template::directory in the options
�le. Each template can be prede�ned by including it into the options �le
For example,

Template::manage_portfolio_positions manage_portfolio_positions.mpl

Template::manage_portfolio_historic manage_portfolio_historic.mpl

�timeframe { day | week | ... }
Tell how to parse the format of the date.

�nocon�rm

Do not prompt for con�rmation, just apply the request

�detailed

Add extra information into the output. On by default. Turn o� by using
�nodetailed

�backup

Make backup of <portfolio> if changes made and applied. Turn o� by us-
ing �nobackup. backup portfolio �lename will be<portfolio>.<yyyymmddhhmmss>
where yyyymmddhhmmss is the date-time of the portfolio �les' last mod-
i�cation date and time.

�since <date>

�until <date>

Those two options are used to restrict the result of a "report" command
to a certain timeframe.

�options=<key>=<value>

A con�guration option (typically given in the options �le) in the form
of a key=value pair. For example, �option=DB::Text::format=0 sets the
format used to parse markets via the DB::Text module to 0.

27



COMMANDS

create

creates<portfolio> and optionally set<initial-sum> available funds. <initial-
sum> is unset if omitted

bought <quantity> <share> <price> [<date>]

sold <quantity> <share> <price> [<date>]

create a <portfolio> purchase (bought) or sale (sold) transaction

it doesn't appear to support long and short transactions but ...

stop <share> <price>

create a stop order for <share> at <price>

report { performance | positions | historic | analysis }
generate and output the speci�ed report

set { initial-sum | broker } <value>

create and set the value of variables initial-sum or broker to <value>

�le <�lename>

Speci�es the name of a �le which contains a list of

bought <quantity> <share> <price> [ <date> <source> ]

and

sold <quantity> <share> <price> [ <date> <source> ]

commands, one per line. This allows you to submit multiple bought/sold
commands in a single instance.

db

reads beancounter database portfolio table and creates <portfolio> from
it.

negative stock quantities are considered sells, <source> is derived from
the 'type' column. currency is ignored, as GT seems to do.

since the beancounter portfolio really doesn't have necessary functionality
to manage closed positions it is probably best to manage sells in the GT
portfolio using command line or command �le features provided here. in
addition, by not introducing negative stock quantities in the beancounter
portfolio table you will also avoid tickling bugs and messing up the report
formats with the unexpected negative quantity value.

28



DESCRIPTION

This tool lets you create a portfolio object on your disk and update it regularly,
this can be used to create virtual portfolio to test how a strategy works in real
time or to track your real portfolio and use GeniusTrader to make some analysis
on it.

The �rst parameter is a �lename of a portfolio. The name is supposed to be
relative to the portfolio directory which is $HOME/.gt/portfolio in Unix but can
be overriden with the con�guration item GT::Portfolio::Directory. If it doesn't
exist, it will try in the local directory.

BUGS (or maybe just rough edges (in my opinion))

ha! i �xed this next bit
really should be a usage mode, invoked with args -h* | -? | -: and since the

program requires a command, any instantiation without a valid one.
Needs to do a better job of checking input values for bought/sold operations

or needs to provide a way of completely removing a bad entry
might also be nice to provide a couple of output modes; say one to generate

a �le that can used as input for the ./manage_portfolio.pl <portfolio> �le
<�lename> capability and one to generate a textualized version of the portfolio,
if that makes sense.

29



14 scan.pl

Scan the market looking for signals

SYNOPSIS

./scan.pl [ options ] <market �le> <date> <system �le> [ <system �le> ... ]

DESCRIPTION

scan.pl will scan all stocks listed in <market �le> looking for the signals indi-
cated in each <system �le> performing the analysis on the speci�ed <date>. A
system �le must contain one or more description of GT::Signals or description
of GT::Systems. You may list multiple system �les on the command line. In
the absence of a �le standard input will be read instead.

NOTE � if you omit a system �le name scan.pl will happily wait forever
attempting to read from stdin.

The list of securities (code and name) that meet the speci�ed signals is
output at the end and grouped by signal.

Output can be either text (default) or html.
<market �le> format:
stock or index symbols one per line
<date>
the date to perform the analysis on. the date string can be in any format

that Date::Manip (if installed) can parse or the defacto gt standard date format
(YYYY-MM-DD HH:MM:SS) where time is optional

<system �le> format:
One or more GT::Signals or GT::Systems descriptions each on a separate

line. The descriptions have the form of a signal or system name, followed by its
arguments.

Example: S:Generic:And {S:Generic:CrossOverUp {I:SMA 5} {I:SMA 20}}
{S:Generic:Increase {I:ADX}}

Description �les can be formatted using the symbol '\' as the line continua-
tion symbol. This symbol must appear as the last character on the line before
the trailing line terminator (in unix that's a '\n' character). No whitespace
must appear between the \ and the newline.

Example: S:Generic:And \ {S:Generic:CrossOverUp {I:SMA 5} {I:SMA 20}}
\ {S:Generic:Increase {I:ADX}}

Blank lines and lines that start with # are comments and ignored. Note if
you comment out the �rst line of multi-line description, the entire is e�ectively
commented out.

Example: # the following signal description is commented out #S:Generic:And
{S:Generic:Above {I:Prices} {I:EMA 30}} \ {S:Generic:Above {I:Prices} {I:EMA
150}}

30



OPTIONS

�full, �start=<date>, �end=<date>, �nb-item=<nr>

Determines the time interval over which the scan is run. In detail:

�start=2001-1-10, �end=2002-11-17

The start and end dates considered for the scan. The date needs
to be in the format con�gured in �/.gt/options and must match the
timeframe selected.

�nb-items=100

The number of periods to use in the scan.

�full

Runs the scan with the full history.

The periods considered are relative to the selected time frame (i.e., if
timeframe is "day", these indicate a date; if timeframe is "week", these
indicate a week; etc.). In GT format, use "YYYY-MM-DD" or "YYYY-
MM-DD hh:mm:ss" for days (the latter giving intraday data), "YYYY-
WW" for weeks, "YYYY/MM" for months, and "YYYY" for years.

The interval of periods examined is determined as follows:

1. if present, use �start and �end (otherwise default to last price)

2. use �nb-item (from �rst or last, whichever has been determined), if
present

3. if �full is present, use �rst or last price, whichever has not yet been
determined

4. otherwise, consider a two year interval.

The �rst period determined following this procedure is chosen. If addi-
tional options are given, these are ignored (e.g., if �start, �end, �full are
given, �full is ignored).

�timeframe=1min|5min|10min|15min|30min|hour|3hour|day|week|month|year

The timeframe can be any of the available modules in GT/DateTime.

�max-loaded-items

Determines the number of periods (back from the last period) that are
loaded for a given market from the data base. Care should be taken to
ensure that these are consistent with the performed analysis. If not enough
data is loaded to satisfy dependencies, for example, correct results cannot
be obtained. This option is e�ective only for certain data base modules
and ignored otherwise.

31



�verbose

Makes scan.pl and invoked methods talkative (default - false)

�nbprocess=2

If you want to start two (or more) scans in parallel (useful for machines
with several CPUs for example).

�html

Output is generated in html (default - false)

�url="url"

If html output enabled then embed this url as href (default - http://�nance.yahoo.com/l?s=<code>)

�options=<key>=<value>

A con�guration option (typically given in the options �le) in the form
of a key=value pair. For example, �option=DB::Text::format=0 sets the
format used to parse markets via the DB::Text module to 0.

EXAMPLES (culled from devel archive)

To scan for all stocks that are trading above both their 30 day and 150 day
EMAs create a system �le containing this GT::Signals description (as a single
line)

S:Generic:And {S:Generic:Above {I:Prices} {I:EMA 30}} {S:Generic:Above
{I:Prices} {I:EMA 150}}

To scan for all stocks that are trading below both their 30 day and 150 day
EMAs create a system �le containing this GT::Signals description (as a single
line)

S:Generic:And {S:Generic:Below {I:Prices} {I:EMA 30}} {S:Generic:Below
{I:Prices} {I:EMA 150}}

Dates

If the user has Date::Manip installed it allows the use of date strings

that can be parsed by Date::Manip in addition the to defacto standard

date-time format accepted by GT (YYYY-MM-DD HH:MM:SS) time part is optional

Date::Manip is not required, without it users cannot use short-cuts to

specify date strings. such short cuts include

--start '6 months ago'

--end 'today'

Date string checking includes verifying the date string format

is valid and the date is a valid date (and time if provided)

Errors will be displayed and the script will terminate.

32



The script also validates that the dates specified are consistent

with respect to their purpose (--start is earlier than --end etc)

Finally, appropriate timeframe conversion is performed so the user

need not convert command line date strings from the day time to

say week or month as it will be done automagically.

Usage examples:

with market_file (a file) containing the next 2 lines:

JAVA

AAPL

with system_file (a file) containing the next 6 lines:

# example system_file

#

# todays price close was above open

S:Generic:Above { I:Prices CLOSE } { I:Prices OPEN }

# end of system_file

with Date::Manip installed

% scan.pl --timeframe day --start '6 months ago' --end 'today' market_file \

'today' system_file

prints

Signal: S:Generic:Above {I:Prices CLOSE} {I:Prices OPEN}

AAPL - APPLE INC

replace day with week and you will (should) get:

Signal: S:Generic:Above {I:Prices CLOSE} {I:Prices OPEN}

AAPL - APPLE INC

JAVA - SUN MICROSYS INC

without Date::Manip you will need to use:

% scan.pl --timeframe day --start 2007-04-24 --end 2007-10-24 market_file \

2007-10-24 system_file

or

% scan.pl --timeframe week --start 2007-04-24 --end 2007-10-24 market_file \

2007-10-24 system_file

and should get the same results respectively

"Bad system call" failure on cygwin

If you are using cygwin on Windows to run GT, and you encounter a "Bad sys-
tem call" error when running scan.pl, you need to enable cygserver. cygserver
is a utility that provides cygwin applications with persistent services. See

33



http://www.cygwin.com/cygwin-ug-net/using-cygserver.html for more detail. The
�rst time you use cygserver, execute /usr/bin/cygserver-con�g to con�gure the
service (there are many options but the above should su�ce, see the manual
for more). You can then invoke the service automatically through windows, or
use net start cygserver to do so. You must also set the CYGWIN environment
variable to 'server': CYGWIN=server export CYGWIN

34



select_combination.pl [ �limit-ratio <min_ratio_perf/draw_down>
] [ �limit-performance <min_perf> ] [ �set <set> ]

Display a list of the best "code <-> system" combination possible. It selects
the system with highest ration "performance / maw_draw_down". You can
decide to exclude some system if they have a ration less than a minimum ration
by using �limit-ration, you can also exclude systems if they have a performance
less than a minimum given by �limit-performance.

35



15 ./test_indicator.pl [ �full ] [ �last-record ] [
�verbose ] <indicatorname> <code> [args...]

Examples: ./test_indicator.pl SMA IBM [100] ./test_indicator.pl �full RSI
13000

Args are passed to the new call that will create the indicator.

36


